Semantics for a Higher Order Functional Programming Language for Quantum Computation
نویسنده
چکیده
The objective of this thesis is to develop a semantics for higher-order quantum information. Following the work done in the author’s M.Sc. thesis, we study a lambda calculus for quantum computation with classical control. The language features two important properties. The first one, arising from the so-called no-cloning theorem of quantum computation, is the need for a distinction between duplicable and non-duplicable elements. For keeping track of duplicability at higher-order, we use a type system inspired by the resource-sensitive linear logic. The second important aspect is the probability inherent to measurement, the only operation for retrieving classical data from quantum data. This forces us into choosing a reduction strategy for being able to define an operational semantics. We address the question of a denotational semantics in two respects. First, we restrict the study to the strictly linear aspect of the language. Doing so, we suppress the need for distinguishing between duplicable and non-duplicable elements and we can focus on the description of quantum features at higher-order. Using the category of completely positive maps as a framework, we build a fully abstract denotational model of the strictly linear fragment of the language. The study of the full language is more demanding. For dealing with the probabilistic aspect of the language, we use a method inspired by Moggi and build a computational model with a distinction between values and computations. For the distinction between duplicability and non-duplicability in the calculus, we adapt Bierman’s linear category, where the duplication is considered as a comonad with specific properties. The resulting model is what we call a linear category for duplication. Finally, we only focus on the fragment of the language that contains the aforementioned elements, and remove the classical Boolean and quantum Boolean features to get a generic computational linear lambda-calculus. In this idealized setting, we show that such a language have a full and complete interpretation in a linear category for duplication.
منابع مشابه
Reasoning about Entanglement and Separability in Quantum Higher-Order Functions
We present a logical approach to the separability analysis issue for a functional quantum computation language. This logic is inspired by previous works on logical analysis of aliasing for imperative functional programs. Both analyses share similarities notably because they are highly non-compositional. Nevertheless, the intrisic non determinism of quantum computation has a large impact on the ...
متن کاملA logical analysis of entanglement and separability in quantum higher-order functions
We present a logical separability analysis for a functional quantum computation language. This logic is inspired by previous works on logical analysis of aliasing for imperative functional programs. Both analyses share similarities notably because they are highly non-compositional. Quantum setting is harder to deal with since it introduces non determinism and thus considerably modifies semantic...
متن کاملA functional quantum programming language
This thesis introduces the language QML, a functional language for quantumcomputations on finite types. QML exhibits quantum data and control structures,and integrates reversible and irreversible quantum computations.The design of QML is guided by the categorical semantics: QML programs are in-terpreted by morphisms in the category FQC of finite quantum computations, whichpr...
متن کاملQML: Quantum data and control
We introduce the language QML, a functional language for quantum computations on finite types. QML introduces quantum data and control structures, and integrates reversible and irreversible quantum computation. QML is based on strict linear logic, hence weakenings, which may lead to decoherence, have to be explicit. We present an operational semantics of QML programs using quantum circuits, and...
متن کاملA Fully Abstract Semantics for a Higher-Order Functional Language with Nondeterministic Computation
This paper is about the relationship between the theory of monadic types and the practice of concurrent functional programming. We present a typed functional programming language CMML, with a type system based on Moggi’s monadic metalanguage, and concurrency based on Reppy’s Concurrent ML. We present an operational and denotational semantics for the language, and show that the denotational sema...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008